Moufang symmetry XII. Reductivity and hidden associativity of infinitesimal Moufang transformations

نویسنده

  • Eugen Paal
چکیده

It is shown how integrability of the generalized Lie equations of continous Moufang transformatiosn is related to the reductivity conditions and Sagle-Yamaguti identity. 2000 MSC: 20N05, 17D10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moufang Symmetry Iv. Reductivity and Hidden Associativity

It is shown how integrability of the generalized Lie equations of a local analytic Moufang loop is related to the reductivity conditions and Sagle-Yamaguti identity. 2000 MSC: 20N05, 17D10

متن کامل

Moufang symmetry VI. Reductivity and hidden associativity in Mal’tsev algebras

Reductivity in the Ma’tsev algebras is inquired. This property relates the Mal’tsev algebras to the general Lie triple systems. 2000 MSC: 20N05, 17D10

متن کامل

Moufang symmetry X. Generalized Lie and Maurer-Cartan equations of continuous Moufang transformations

The differential equations for a continuous birepresentation of a local analytic Moufang loop are established. The commutation relations for the infinitesimal operators of the birepresentation are found. These commutation relations can be seen as a (minimal) generalization of the Maurer-Cartan equations and do not depend on the particular birepresentation. 2000 MSC: 20N05, 17D10

متن کامل

Moufang symmetry VII. Moufang transformations

Concept of a birepresentation for the Moufang loops is elaborated. 2000 MSC: 20N05

متن کامل

Moufang symmetry I. Generalized Lie and Maurer-Cartan equations

The differential equations for a local analytic Moufang loop are established. The commutation relations for the infinitesimal translations of the analytic Moufang are found. These commutation relations can be seen as a (minimal) generalization of the Maurer-Cartan equations. 2000 MSC: 20N05, 17D10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008